

25-07674

Sample &

🖥 Buy

SN74LVC1G74

SCES794E -OCTOBER 2009-REVISED JANUARY 2015

SN74LVC1G74 Single Positive-Edge-Triggered D-Type Flip-Flop with Clear and Preset

Technical

Documents

Features 1

- Available in the Texas Instruments NanoFree[™] Package
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Supports Down Translation to V_{CC}
- Max t_{pd} of 5.9 ns at 3.3 V
- Low Power Consumption, 10-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$
- Typical V_{OHV} (Output V_{OH} Undershoot) > 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model
 - 200-V Machine Model
 - 1000-V Charged-Device Model

Applications 2

- Servers
- LED Displays
- Network switch
- Telecom Infrastructure
- Motor Drivers
- I/O Expanders

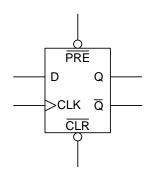
Simplified Schematic 4

3 Description

Tools &

This single positive-edge-triggered D-type flip-flop is designed for 1.65-V to 5.5-V V_{CC} operation.

NanoFree[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.


A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE			
	SM8 (8)	2.95 mm × 2.80 mm			
SN74LVC1G74	US8 (8)	2.30 mm × 2.00 mm			
SIN74LVC1074	X2SON (8)	1.40 mm × 1.00 mm			
	UQFN (8)	1.50 mm × 1.50 mm			

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

Features 1	9	Detailed Description	9
Applications 1		9.1 Overview	9
Description 1		9.2 Functional Block Diagram	9
Simplified Schematic 1		9.3 Feature Description	9
Revision History 2		9.4 Device Functional Modes	9
Pin Configuration and Functions	10	Application and Implementation	10
Specifications		10.1 Application Information	
7.1 Absolute Maximum Ratings		10.2 Typical Power Button Circuit	10
7.2 ESD Ratings	11	Power Supply Recommendations	11
7.3 Recommended Operating Conditions	12	Layout	12
7.4 Thermal Information		12.1 Layout Guidelines	12
7.5 Electrical Characteristics		12.2 Layout Example	12
7.6 Timing Requirements 6	13	Device and Documentation Support	12
7.7 Switching Characteristics		13.1 Trademarks	12
7.8 Operating Characteristics		13.2 Electrostatic Discharge Caution	12
7.9 Typical Characteristics		13.3 Glossary	12
Parameter Measurement Information	14	Mechanical, Packaging, and Orderable Information	12

Revision History 5

1

2

3

4

5

6

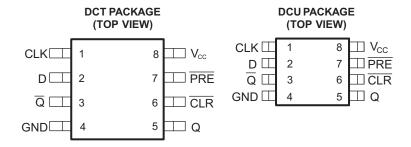
7

8

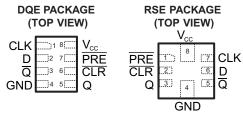
CI	hanges from Revision D (January 2013) to Revision E	Page
•	Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section.	
•	Deleted Ordering Information table.	1
•	Updated Features.	1

Changes from Original (October 2009) to Revision A

•	Changed I _{off} description in <i>Features</i>	1
•	Changed Timing Requirements table	6
•	Changed Switching Requirements table.	6


Copyright © 2009-2015, Texas Instruments Incorporated

www.ti.com


Page

6 Pin Configuration and Functions

See mechanical drawings for dimensions.

See mechanical drawings for dimensions

Pin Functions

	PIN	ТҮРЕ	DESCRIPTION
NAME	NO.	ITPE	DESCRIPTION
CLK	1	I	Clock input
CLR	6	I	Clear input - Pull low to set Q output low
D	2	I	Input
GND	4	—	Ground
Q	5	0	Output
Q	3	0	Inverted output
PRE	7	I	Preset input - Pull low to set Q output high
V _{CC}	8		Supply

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impedance or powe	er-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the high or low state $^{(2)(3)}$	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current V _I <	0		-50	mA
I _{OK}	Output clamp current V _O <	< 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND				mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(3) The value of V_{CC} is provided in the *Recommended Operating Conditions* table.

7.2 ESD Ratings

	PARAMETER	DEFINITION	VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V	Supply voltage	Operating	1.65	5.5	V
V _{CC}	Supply voltage	Data retention only	1.5		v
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
	L Park Jacob Servert vertre an	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$			
VIH	High-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$	2		V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	$0.7 \times V_{CC}$		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
	Level I and Second and the sec	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
V _{IL}	Low-level input voltage	$V_{CC} = 3 V \text{ to } 3.6 V$		0.8	V
		$V_{CC} = 4.5 V \text{ to } 5.5 V$		$0.3 \times V_{CC}$	
VI	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	
I _{OH}	High-level output current			-16	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 4.5 V		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
I _{OL}	Low-level output current			16	mA
		V _{CC} = 3 V		24	
		V _{CC} = 4.5 V		32	
		$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}, 2.5 \text{ V} \pm 0.2 \text{ V}$		20	
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 V \pm 0.5 V$		5	
		RSE Package	40	05	
-		DQE Package	-40	85	°C
T _A	Operating free-air temperature	DCT Package		405	Ĵ
		DCU Package	-40	125	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

7.4 Thermal Information

		SN74L\	/C1G74		
THERMAL METRIC ⁽¹⁾	DCT	DCU	RSE	DQE	UNIT
	8 PINS	8 PINS	8 PINS	8 PINS	
R _{0JA} Junction-to-ambient thermal resistance	220	227	243	261	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SN74LVC1G74 SCES794E – OCTOBER 2009–REVISED JANUARY 2015

www.ti.com

7.5 Electrical Characteristics

PA	RAMETER	TEST CONDITIONS	V _{cc}	MIN TYP ⁽¹⁾	MAX	UNIT			
		$I_{OH} = -100 \ \mu A$	1.65 V to 5.5 V	V _{CC} – 0.1					
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2					
V _{OH}		$I_{OH} = -8 \text{ mA}$	2.3 V	1.9		V			
V _{OH}	$I_{OH} = -16 \text{ mA}$	2.14	2.4		V				
	$I_{OH} = -24 \text{ mA}$	3 V	2.3						
		$I_{OH} = -32 \text{ mA}$	4.5 V	3.8					
		I _{OL} = 100 μA	1.65 V to 5.5 V		0.1				
		I _{OL} = 4 mA	1.65 V		0.45				
V		I _{OL} = 8 mA	2.3 V		0.3	V			
VOL		I _{OL} = 16 mA	3 V		0.4				
		I _{OL} = 24 mA	3 V		0.55				
		I _{OL} = 32 mA	4.5 V		0.55				
I _I		V _I = 5.5 V or GND	0 to 5.5 V		±5	μA			
I _{off}		V_{I} or $V_{O} = 5.5 V$	0		±10	μA			
I _{CC}		$V_{I} = 5.5 \text{ V or GND}, \qquad I_{O} = 0$	1.65 V to 5.5 V		10	μA			
ΔI_{CC}		One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 5.5 V		500	μA			
Ci		$V_{I} = V_{CC}$ or GND	3.3 V	5		pF			

over recommended operating free-air temperature range (unless otherwise noted)

(1) All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}$ C.

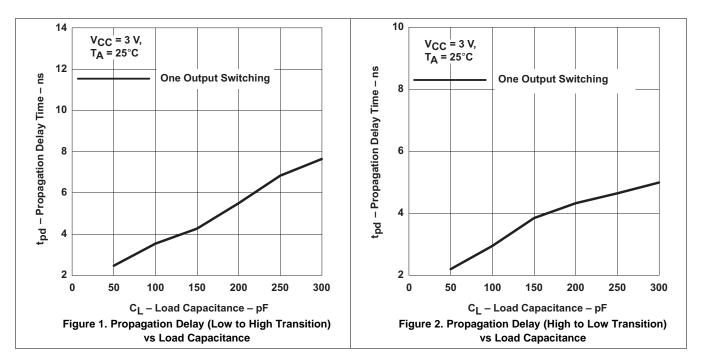
7.6 Timing Requirements

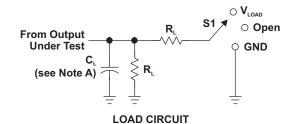
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

			–40°C to 85°C									-40°C to 125°C			
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	1.8 V	V _{CC} =	2.5 V	V _{CC} =	3.3 V	V _{cc} =	= 5 V	V _{CC} =	3.3 V	V _{CC} =	= 5 V	UNIT
	((001101)	MIN	MAX	MIN	MAX									
f _{clock}				80		175		175		200		175		200	MHz
•	(CLK	6.2		2.7		2.7		2		2.7		2		20
۱ _w	PRE or CLR low		6.2		2.7		2.7		2		2.7		2		ns
	[Data	2.9		1.7		1.3		1.1		1.3		1.1		
t _{su}	PRE or C	CLR inactive	1.9		1.4		1.2		1		1.2 1.2		ns		
t _h			0		0.3		1.2		0.5		1.2		0.5		ns

7.7 Switching Characteristics

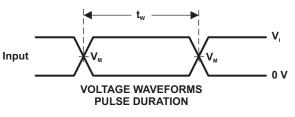
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

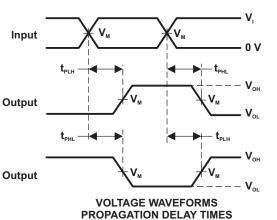

	FROM (INPUT)	-	-		–40°C to 85°C									-40°C to 125°C			
PARAMETER					V _{CC} = 1.8 V		V _{CC} =	V_{CC} = 2.5 V		$V_{CC} = 3.3 V$		$V_{CC} = 5 V$		3.3 V	$V_{CC} = 5 V$		UNIT
		(001101)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
f _{max}			80		175		175		200		175		200		MHz		
	CLK	Q	4.8	13.4	2.2	7.1	2.2	5.9	1.4	4.1	2.2	7.9	1.4	6.1			
t _{e el}		Q	6	14.4	3	7.7	2.6	6.2	1.6	4.4	2.6	8.2	1.6	6.4	ns		
۲pd	PRE or CLR low	Q or Q	4.4	12.9	2.3	7	1.7	5.9	1.6	4.1	1.7	7.9	1.6	6.1			

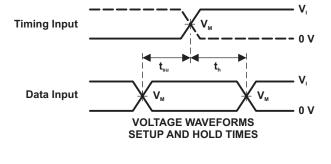

7.8 Operating Characteristics

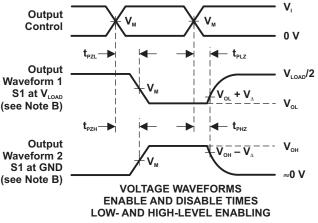
$T_A = 25^{\circ}C$											
	PARAMETER	V _{CC} = 1.8 V V _{CC} = 2.5 V V _{CC} = 3.3		$V_{CC} = 3.3 V$	$V_{CC} = 5 V$						
	PARAMETER	TEST CONDITIONS	ТҮР	TYP TYP		ТҮР	UNIT				
C _{pd}	Power dissipation capacitance	f = 10 MHz	35	35	37	40	pF				

7.9 Typical Characteristics




8 Parameter Measurement Information


TEST	S1
t _{PLH} /t _{PHL}	Open
t_{PLZ}/t_{PZL}	VLOAD
t_{PHZ}/t_{PZH}	GND

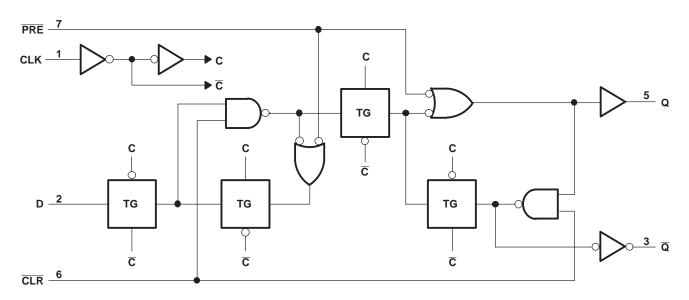

	INPUTS					_		
V _{cc}	V	t,/t,	V _M	VLOAD	C	R	V	
1.8 V ± 0.15 V	V _{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	1 k Ω	0.15 V	
$2.5~V\pm0.2~V$	V_{cc}	≤2 ns	V _{cc} /2	2 × V _{cc}	30 pF	500 Ω	0.15 V	
$3.3~V\pm0.3~V$	3 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V	
$5 V \pm 0.5 V$	V_{cc}	≤2.5 ns	V _{cc} /2	2 × V _{cc}	50 pF	500 Ω	0.3 V	

INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z₀ = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{en} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms



9 Detailed Description

9.1 Overview

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

9.2 Functional Block Diagram

9.3 Feature Description

- · Allow down voltage translation
 - 5 V to 3.3 V
 - 5.0 V to 1.8 V
 - 3.3 V to 1.8 V
- Inputs accept voltage levels up to 5.5 V
- I_{off} Feature
 - Can prevent backflow current that can damage device when powered down

9.4 Device Functional Modes

Table 1. Function Table

	INPUT	OUTPUTS			
PRE	CLR	CLK	D	Q	Q
L	Н	Х	Х	Н	L
н	L	Х	Х	L	н
L	L	Х	х	H ⁽¹⁾	H ⁽¹⁾
н	Н	↑	н	н	L
н	Н	\uparrow	L	L	Н
н	Н	L	Х	Q ₀	\overline{Q}_0

(1) This configuration is nonstable; that is, it does not persist when PRE or CLR returns to its inactive (high) level.

ISTRUMENTS

FXAS

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

The resistor and capacitor at the $\overline{\text{CLR}}$ pin are optional. If they are not used, the $\overline{\text{CLR}}$ pin should be connected directly to V_{CC} to be inactive.

10.2 Typical Power Button Circuit

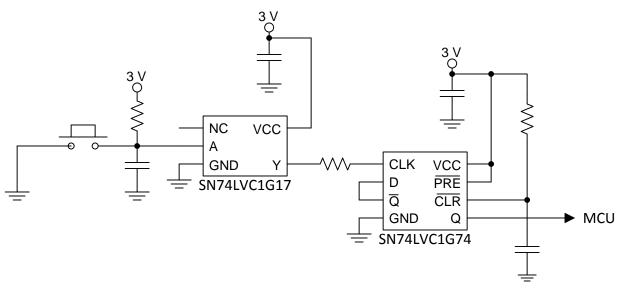
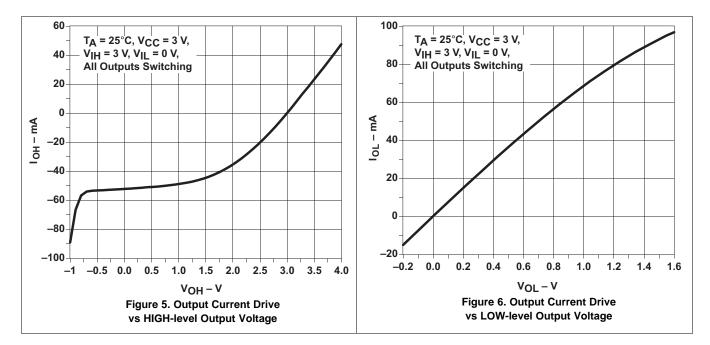


Figure 4. Device Power Button Circuit

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive but the high drive will also create faster edges into light loads so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure


- 1. Recommended Input Conditions:
 - For rise time and fall time specifications, see ($\Delta t / \Delta V$) in *Recommended Operating Conditions* table.
 - For specified high and low levels, see (V_{IH} and V_{IL}) in *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend Output Conditions:
 - Load currents should not exceed 50 mA per output and 100 mA total for the part.
 - Series resistors on the output may be used if the user desires to slow the output edge signal or limit the

Typical Power Button Circuit (continued)

output current.

10.2.3 Application Curves

11 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions* table. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F capacitor is recommended and if there are multiple V_{CC} terminals then .01- μ F or .022- μ F capacitors are recommended for each power terminal. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

TEXAS INSTRUMENTS

www.ti.com

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 7 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled.

12.2 Layout Example

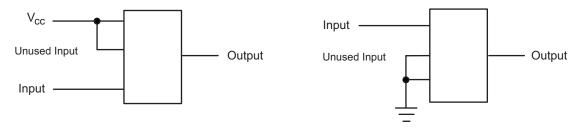


Figure 7. Layout Diagram

13 Device and Documentation Support

13.1 Trademarks

NanoFree is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

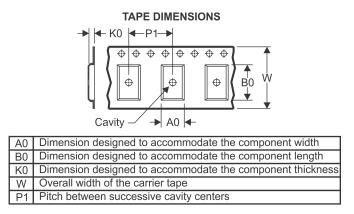
13.3 Glossary

SLYZ022 — TI Glossary.

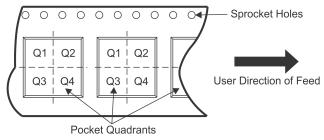
This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

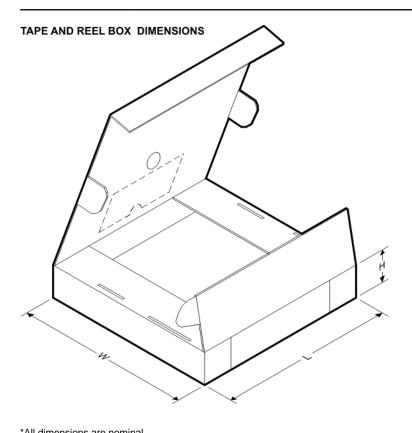

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

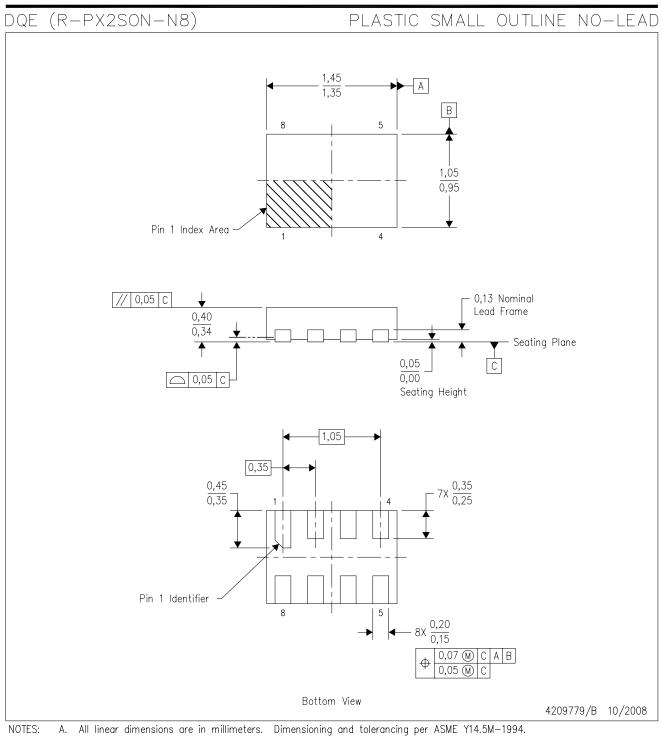
TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

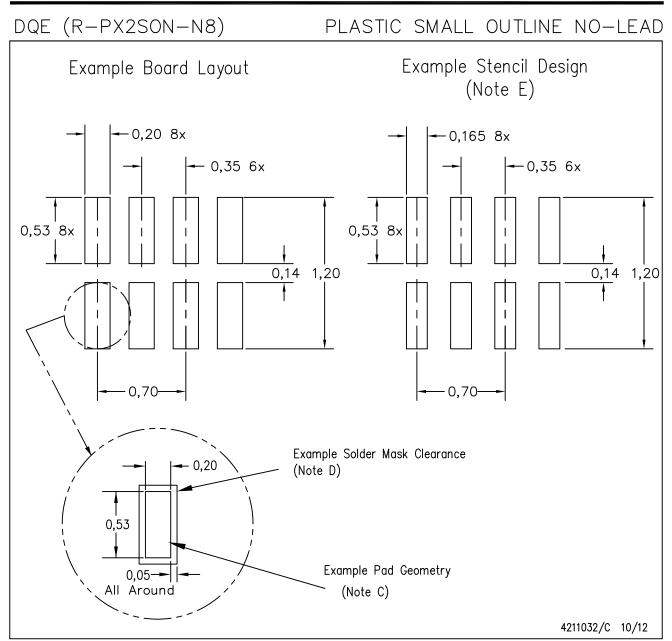

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G74DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
SN74LVC1G74DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G74DCUR	VSSOP	DCU	8	3000	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G74DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G74DCUT	VSSOP	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G74DCUT	VSSOP	DCU	8	250	178.0	9.5	2.25	3.35	1.05	4.0	8.0	Q3
SN74LVC1G74DQER	X2SON	DQE	8	5000	180.0	9.5	1.15	1.6	0.5	4.0	8.0	Q1
SN74LVC1G74RSE2	UQFN	RSE	8	5000	180.0	9.5	1.7	1.7	0.75	4.0	8.0	Q3
SN74LVC1G74RSER	UQFN	RSE	8	5000	180.0	9.5	1.7	1.7	0.75	4.0	8.0	Q2

Texas Instruments

www.ti.com


PACKAGE MATERIALS INFORMATION

28-Sep-2017

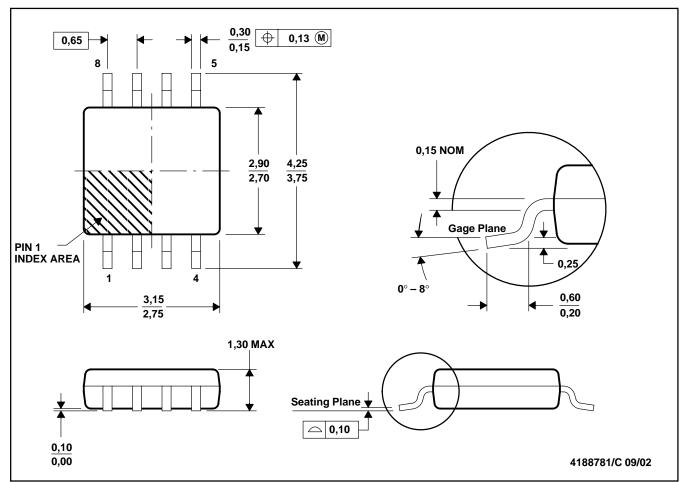

*All dimensions are nominal									
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)		
SN74LVC1G74DCTR	SM8	DCT	8	3000	182.0	182.0	20.0		
SN74LVC1G74DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0		
SN74LVC1G74DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0		
SN74LVC1G74DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0		
SN74LVC1G74DCUT	VSSOP	DCU	8	250	202.0	201.0	28.0		
SN74LVC1G74DCUT	VSSOP	DCU	8	250	202.0	201.0	28.0		
SN74LVC1G74DQER	X2SON	DQE	8	5000	184.0	184.0	19.0		
SN74LVC1G74RSE2	UQFN	RSE	8	5000	184.0	184.0	19.0		
SN74LVC1G74RSER	UQFN	RSE	8	5000	184.0	184.0	19.0		

MECHANICAL DATA

- B. This drawing is subject to change without notice.
 C. SON (Small Outline No-Lead) package configuration.
 D. This package complies to JEDEC M0-287 variation X2EAF.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Over-printing land for acceptable area ratio is not viable due to land width and bridging potential. Customer may further reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.
- H. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- I. Component placement force should be minimized to prevent excessive paste block deformation.



MECHANICAL DATA

MPDS049B - MAY 1999 - REVISED OCTOBER 2002

DCT (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

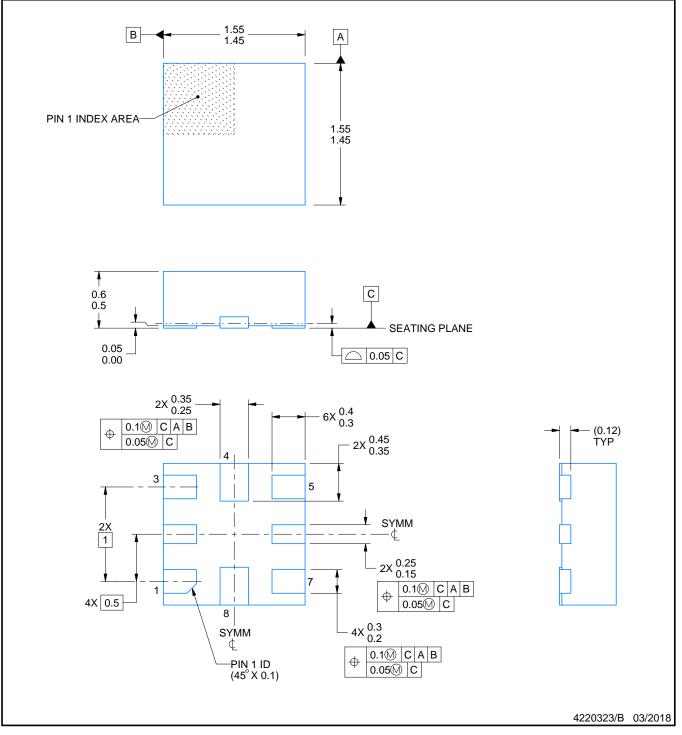
C. Body dimensions do not include mold flash or protrusion

D. Falls within JEDEC MO-187 variation DA.

DCT (R-PDSO-G8) PLASTIC SMALL OUTLINE Example Board Layout Example Stencil Design (Note C,E) (Note D) - 6x0,65 - 6x0,65 8x0,25-8x1,55 3,40 3,40 Non Solder Mask Defined Pad Example Pad Geometry -0,30 (Note C) 1,60 Example -0,07 Non-solder Mask Opening All Around (Note E) 4212201/A 10/11

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


RSE0008A

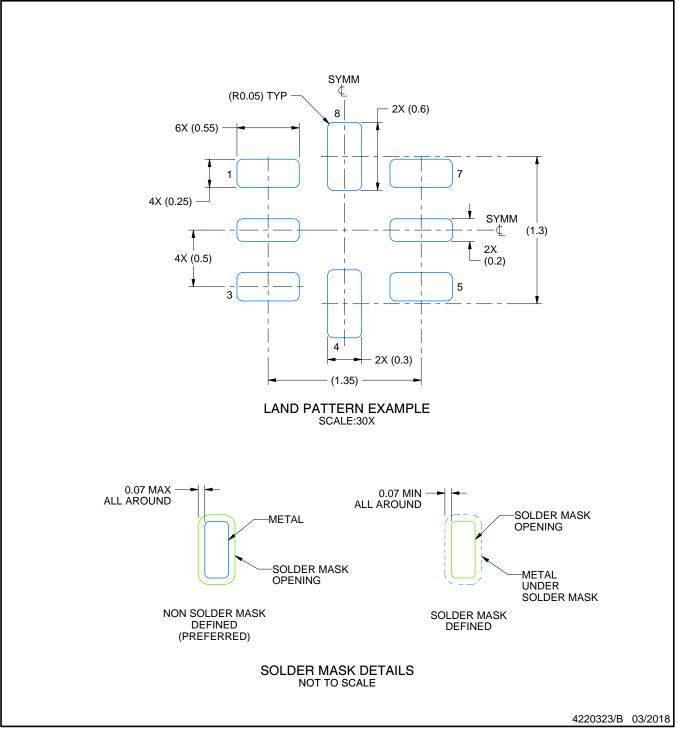
PACKAGE OUTLINE

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



RSE0008A

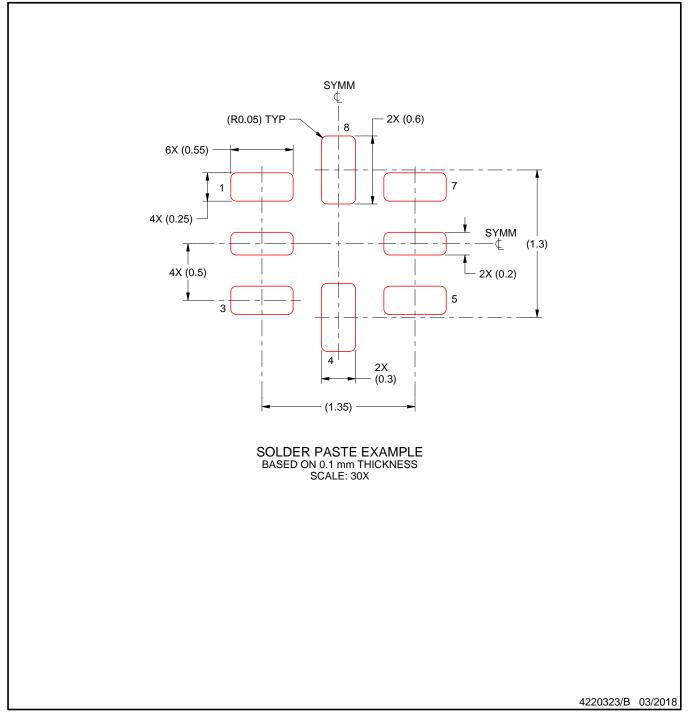
EXAMPLE BOARD LAYOUT

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

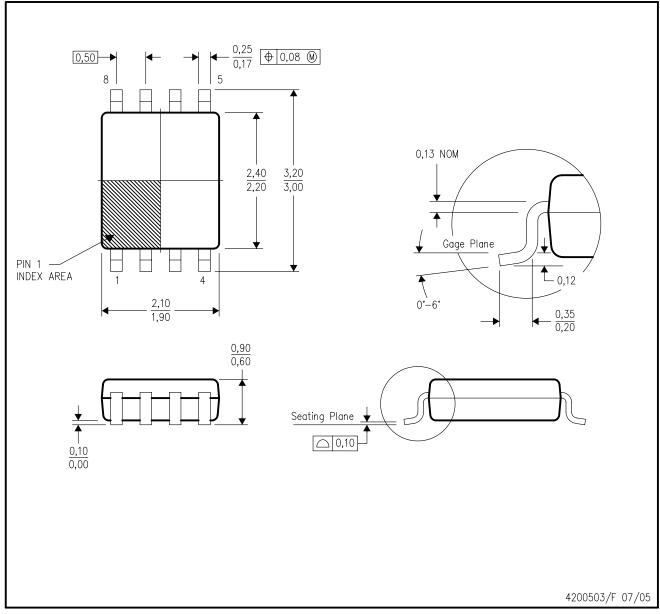


RSE0008A

EXAMPLE STENCIL DESIGN

UQFN - 0.6 mm max height

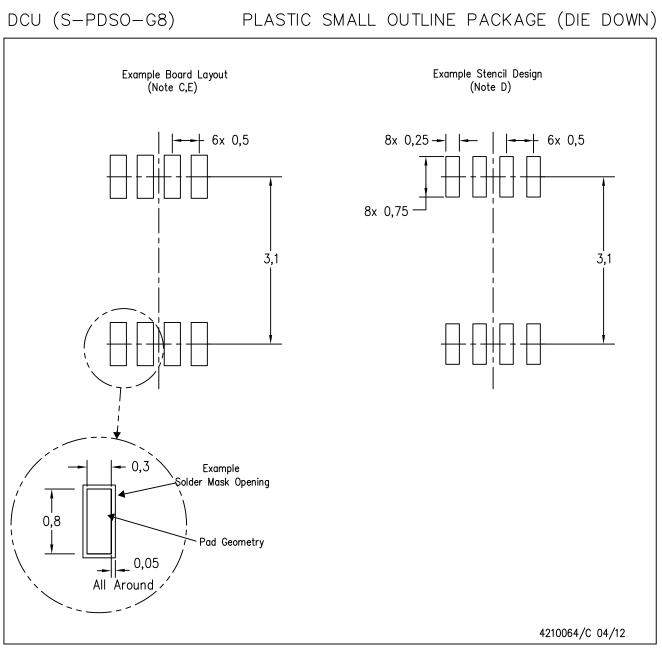
PLASTIC QUAD FLATPACK - NO LEAD


NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.

D. Falls within JEDEC MO-187 variation CA.

- NOTES: A. All linear dimensions are in millimeters. В. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated