

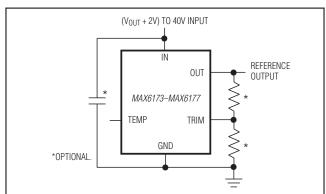
High-Precision Voltage References with Temperature Sensor

General Description

The MAX6173–MAX6177 are low-noise, high-precision voltage references. The devices feature a proprietary temperature-coefficient curvature-correction circuit and laser-trimmed thin-film resistors that result in a very low 3ppm/°C temperature coefficient and excellent ±0.06% initial accuracy. The MAX6173–MAX6177 provide a TEMP output where the output voltage is proportional to the die temperature, making the devices suitable for a wide variety of temperature-sensing applications. The devices also provide a TRIM input, allowing fine trimming of the output voltage with a resistive divider network. Low temperature drift and low noise make the devices ideal for use with high-resolution A/D or D/A converters.

The MAX6173–MAX6177 provide accurate preset +2.5V, +3.3V, +4.096V, +5.0V, and +10V reference voltages and accept input voltages up to +40V. The devices draw 320µA (typ) of supply current and source 30mA or sink 2mA of load current. The MAX6173–MAX6177 use bandgap technology for low-noise performance and excellent accuracy. The MAX6173–MAX6177 do not require an output bypass capacitor for stability, and are stable with capacitive loads up to 100µF. Eliminating the output bypass capacitor saves valuable board area in space-critical applications.

The MAX6173-MAX6177 are available in an 8-pin SO package and operate over the automotive (-40°C to +125°C) temperature range.


_Applications

A/D Converters D/A Converters Digital Voltmeters Voltage Regulators
Threshold Detectors

Features

- ♦ Wide (Vout + 2V) to +40V Supply Voltage Range
- **♦** Excellent Temperature Stability: 3ppm/°C (max)
- ♦ Tight Initial Accuracy: 0.05% (max)
- ♦ Low Noise: 3.8µV_{P-P} (typ at 2.5V Output)
- ♦ Sources up to 30mA Output Current
- ♦ Low Supply Current: 450µA (max at +25°C)
- **♦** Linear Temperature Transducer Voltage Output
- +2.5V, +3.3V, +4.096V, +5.0V, or +10V Output Voltages
- ♦ Wide Operating Temperature Range: -40°C to +125°C
- ♦ No External Capacitors Required for Stability
- ♦ Short-Circuit Protected

Typical Operating Circuit

Pin Configuration appears at end of data sheet.

Ordering Information/Selector Guide

PART	TEMP RANGE	PIN- PACKAGE	OUTPUT VOLTAGE (V)	TEMPERATURE COEFFICIENT (ppm/°C) -40°C TO +125°C	INITIAL ACCURACY (%)							
MAX6173AASA+	-40°C to +125°C	8 SO	2.500	3	0.06							
MAX6173BASA+	-40°C to +125°C	8 SO	2.500	10	0.10							
MAX6174AASA+	-40°C to +125°C	8 SO	4.096	3	0.06							
MAX6174BASA+	-40°C to +125°C	8 SO	4.096	10	0.10							
MAX6175AASA+	-40°C to +125°C	8 SO	5.000	3	0.06							
MAX6175BASA+	-40°C to +125°C	8 SO	5.000	10	0.10							
MAX6175BASA/V+	-40°C to +125°C	8 SO	5.000	10	0.10							
MAX6176AASA+	-40°C to +125°C	8 SO	10.000	3	0.05							
MAX6176BASA+	-40°C to +125°C	8 SO	10.000	10	0.10							
MAX6177AASA+	-40°C to +125°C	8 SO	3.300	3	0.06							
MAX6177BASA+	-40°C to +125°C	8 SO	3.300	10	0.10							

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

[/]V denotes an automotive qualified part.

High-Precision Voltage References with Temperature Sensor

ABSOLUTE MAXIMUM RATINGS

IN to GND0.3V to +42V	Operating Temperature Range40°C to +125°C
OUT, TRIM, TEMP to GND0.3V to (V _{IN} + 0.3V)	Junction Temperature+150°C
Output Short Circuit to GND5s	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	Lead Temperature (soldering, 10s)+300°C
8-Pin SO (derate 5.9mW/°C above +70°C)471mW	Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6173 (VOUT = 2.5V)

 $(V_{IN} = +5V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
Outout Valtage		No load, T _A = +25°C	MAX6173A (0.06%)	2.4985	2.5	2.5015	V
Output Voltage	Vout	140 load, 1A = +25 C	MAX6173B (0.1%)	2.4975	2.5	2.5025	V
Output Adjustment Range	ΔVTRIM	$R_{POT} = 10k\Omega$		±3	±6		%
Output-Voltage Temperature Coefficient (Note 2)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	MAX6173AASA		1.5	3	ppm/°C	
	101001	174 - 10 0 to 1 120 0	MAX6173BASA		3	10	ррпі, о
Line Deculation (Note 2)	A)// A)/	4.51/2.1/2.401/	T _A = +25°C		0.6	5	10 to to 10 /
Line Regulation (Note 3)	$\Delta V_{OUT} / \Delta V_{IN}$	$4.5V \le V_{IN} \le 40V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		0.8	10	ppm/V
		Sourcing:	T _A = +25°C		2	10	
Load Regulation (Note 3)	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 10mA	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$		2	15	, a sa sa /aa A
	Δ lout	Sinking:	T _A = +25°C		50	500	ppm/mA
		-0.6mA ≤ I _{OUT} ≤ 0	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$		90	900	
Output Short-Circuit	la a	OUT shorted to GND			60		mA
Current	I _{SC}	OUT shorted to IN	OUT shorted to IN		3		MA
Temperature Hysteresis (Note 4)	ΔV _{OUT} / cycle				120		ppm
Long-Term Stability	ΔV _{OUT} / time	1000 hours at T _A = +25	5°C		50		ppm
DYNAMIC	1	I		-			l .
NI ' M II		f = 0.1Hz to 10Hz			3.8		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz			6.8		μV _{RMS}
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of fina	l value, C _{OUT} = 50pF		150		μs
INPUT							
Supply Voltage Range	VIN	Guaranteed by line regulation test		4.5		40.0	V
0		NI- II	T _A = +25°C		300	450	^
Quiescent Supply Current I _{IN}		No load	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			600 µA	
TEMP OUTPUT							
TEMP Output Voltage	VTEMP				570		mV
TEMP Temperature Coefficient	TC _{TEMP}				1.9		mV/°C

High-Precision Voltage References with Temperature Sensor

ELECTRICAL CHARACTERISTICS—MAX6177 (VOUT = 3.3V)

 $(V_{IN} = +10V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
Output Voltage	Vout	No load, $T_A = +25^{\circ}C$	MAX6177A (0.06%)	3.2980	3.3	3.3020	V
Output voltage	VOU1	1N0 10au, 1A = +25 C	MAX6177B (0.1%)	3.2967	3.3	3.3033	v
Output Adjustment Range	ΔV_{TRIM}	$R_{POT} = 10k\Omega$		±3	±6		%
Output-Voltage Temperature Coefficient	nt TCV _{OUT}	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	MAX6177AASA		1.5	3	ppm/°C
(Note 2)		1,7 10 0 10 1 120 0	MAX6177BASA		3	10	ρρ, σ
Line Regulation (Note 3)	ΔV _{OUT} /	5.3V ≤ V _{IN} ≤ 40V	T _A = +25°C		0.6	5	ppm/V
Line negulation (Note 5)	ΔV_{IN}	3.5V \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		0.8	10	ррпі, у
		Sourcing:	T _A = +25°C		2	10	
Load Regulation (Note 3)	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 10mA	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2	15	ppm/
Load Negalation (Note 5)	Δ lout	Sinking:	$T_A = +25^{\circ}C$		50	500	
		-0.6mA ≤ I _{OUT} ≤ 0	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		90	900	
Output Short-Circuit Current	loo	OUT shorted to GND			60		mA
Output Short-Oircuit Current	I _{SC}	OUT shorted to IN	OUT shorted to IN		3		IIIA
Temperature Hysteresis (Note 4)	ΔV _{OUT} / cycle				120		ppm
Long-Term Stability	ΔV _{OUT} / time	1000 hours at T _A = +25°C			50		ppm
DYNAMIC	ı			1			I.
NI-: V-II		f = 0.1Hz to 10Hz			5		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz			9.3		μV _{RMS}
Turn-On Settling Time	t _R	To Vout = 0.1% of fina	I value, C _{OUT} = 50pF		180		μs
INPUT							
Supply Voltage Range	VIN	Guaranteed by line regulation test		5.3		40.0	V
Ouises ant Cumply Cumpnt	I	Nolood	T _A = +25°C		320	500	
Quiescent Supply Current	liN	No load	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			650 µ	
TEMP OUTPUT							
TEMP Output Voltage	VTEMP				630		mV
TEMP Temperature Coefficient	ТСтемР				2.1		mV/°C

High-Precision Voltage References with Temperature Sensor

ELECTRICAL CHARACTERISTICS—MAX6174 (Vout = 4.096V)

 $(V_{IN} = +10V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OUTPUT							•	
Outrout Valtage	M	No load, T _A = +25°C	MAX6174A (0.06%)	4.0935	4.096	4.0985		
Output Voltage	V _{OUT}		MAX6174B (0.1%)	4.0919	4.096	4.1001	V	
Output Adjustment Range	ΔVTRIM	$R_{POT} = 10k\Omega$		±3	±6		%	
Output-Voltage Temperature	TCV _{OUT}	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	MAX6174AASA		1.5	3	ppm/°C	
Coefficient (Note 2)	10,001	14 = -40 0 10 + 123 0	MAX6174BASA		3	10	ррпі, С	
ine Regulation (Note 3)	ΔV _{OUT} /	$6.1V \le V_{1N} \le 40V$	$T_A = +25^{\circ}C$		0.6	5	ppm/V	
Elilo Hogulation (140to 0)	ΔVIN	0.10 = 0 0 = 400	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		0.8	10	ррину	
		Sourcing:	$T_A = +25^{\circ}C$		2	10		
Load Regulation (Note 3)	$\Delta V_{ ext{OUT}}/$	0 ≤ I _{OUT} ≤ 10mA	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$		2	15	ppm/mA	
Load Hegalation (Note 5)	Δlout	Sinking:	$T_A = +25^{\circ}C$		50	500		
		-0.6mA ≤ I _{OUT} ≤ 0	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		90	900		
Output Short-Circuit Current	Isc	OUT shorted to GND			60		mA	
Output offort offour outfort	130	OUT shorted to IN			3		1117 (
Temperature Hysteresis (Note 4)	ΔV _{OUT} / cycle				120		ppm	
Long-Term Stability	ΔV _{OUT} / time	1000 hours at T _A = +25°C			50		ppm	
DYNAMIC								
Noise Valtage	00117	f = 0.1Hz to 10Hz			7		μV _{P-P}	
Noise Voltage	eout	f = 10Hz to 1kHz			11.5		μV _{RMS}	
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final	l value, C _{OUT} = 50pF		200		μs	
INPUT								
Supply Voltage Range	VIN	Guaranteed by line reg	julation test	6.1		40.0	V	
Quiescent Supply Current	I _{IN}	No load	T _A = +25°C		320	500		
Quicocetti ouppiy outtetti	III	TNO IOAU	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			650	μΑ	
TEMP OUTPUT								
TEMP Output Voltage	VTEMP				630		mV	
TEMP Temperature Coefficient	TCTEMP				2.1		mV/°C	

High-Precision Voltage References with Temperature Sensor

ELECTRICAL CHARACTERISTICS—MAX6175 (VOUT = 5.0V)

 $(V_{IN} = +15V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT	•			•			
Outrout Valtage		No load, $T_A = +25^{\circ}C$	MAX6175A (0.06%)	4.9970	5.0	5.0030	V
Output Voltage	Vout		MAX6175B (0.1%)	4.9950	5.0	5.0050]
Output Adjustment Range	ΔVTRIM	$R_{POT} = 10k\Omega$		±3	±6		%
Output-Voltage Temperature Coefficient (Note 2)	JT TA = -40°C to +125°C	MAX6175AASA		1.5	3	ppm/°C	
			MAX6175BASA		3	10	ρρ, σ
Line Regulation (Note 3)	ΔV _{OUT} /	7V ≤ V _{IN} ≤ 40V	T _A = +25°C		0.6	5	nnm//
Line Regulation (Note 3)	ΔV_{IN}	$7 \text{ V} \leq \text{VIN} \leq 40 \text{ V}$	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$		0.8	10	ppm/V
		Sourcing:	T _A = +25°C		2	10	
Load Degulation (Note 2)	ΔV _{OUT} /	$0 \le I_{OUT} \le 10mA$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2	15	nnm/m A
Load Regulation (Note 3)	Δ l $_{ m OUT}$	Sinking:	$T_A = +25^{\circ}C$		50	500	ppm/mA
		-0.6mA ≤ I _{OUT} ≤ 0	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		90	900	
Output Short-Circuit Current	loo	OUT shorted to GND			60		mA
Output Short-Circuit Current	I _{SC}	OUT shorted to IN			3		IIIA
Temperature Hysteresis (Note 4)	ΔV _{OUT} / cycle				120		ppm
Long-Term Stability	ΔV _{OUT} / time	1000 hours at T _A = +25°C			50		ppm
DYNAMIC				•			
Naisa Valtaga		f = 0.1Hz to 10Hz			9		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz			14.5		μV _{RMS}
Turn-On Settling Time	t _R	To $V_{OUT} = 0.1\%$ of fina	l value, C _{OUT} = 50pF		230		μs
INPUT							
Supply Voltage Range	V _{IN}	Guaranteed by line regulation test		7.0		40.0	V
Quiescent Supply Current	los	No load	$T_A = +25^{\circ}C$		320	550	
Quiescent Supply Current	liN	$T_A = -40^{\circ}C \text{ to } +12^{\circ}C$				700	μΑ
TEMP OUTPUT							
TEMP Output Voltage	VTEMP				630		mV
TEMP Temperature Coefficient	ТСтемр				2.1		mV/°C

High-Precision Voltage References with Temperature Sensor

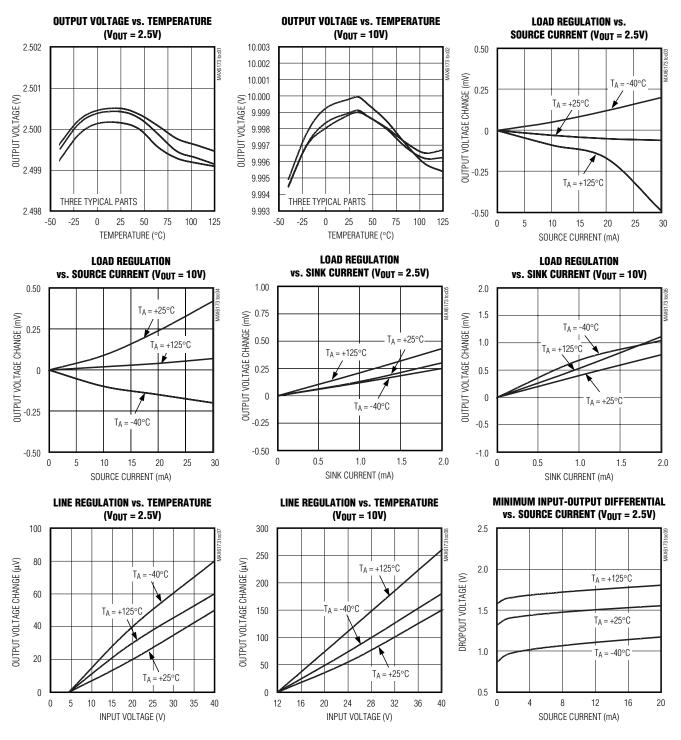
ELECTRICAL CHARACTERISTICS—MAX6176 (VOUT = 10V)

 $(V_{IN} = +15V, T_A = -40$ °C to +125°C, unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OUTPUT				•				
Output Voltage	Volum	No load, T _A = +25°C	MAX6176A (0.05%)	9.9950	10.0	10.0050	V	
Output Voltage	Vout	No load, 1A = +25°C	MAX6176B (0.1%)	9.9900	10.0	10.0100	V	
Output Adjustment Range	ΔV_{TRIM}	$R_{POT} = 10k\Omega$		±3	±6		%	
Output-Voltage Temperature Coefficient	TCV _{OUT}	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	MAX6176AASA		1.5	3	ppm/°C	
(Note 2)	10.001		MAX6176BASA		3	10		
Line Regulation (Note 3)	ΔV _{OUT} /	12V ≤ V _{IN} ≤ 40V	T _A = +25°C		0.6	5	ppm/V	
Line Regulation (Note 3)	ΔV_{IN}	$ 12V \leq V N \leq 40V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		0.8	10	ppm/v	
		Sourcing:	T _A = +25°C		2	10		
Load Regulation (Note 3) I	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 10mA	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		2	15	nom/m A	
	Δ lout	Sinking:	$T_A = +25^{\circ}C$		50	500	500 ppm/mA 900	
		-0.6mA ≤ I _{OUT} ≤ 0	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		90	900		
Output Short-Circuit	I _{SC}	OUT shorted to GND			60		mA	
Current	ISC	OUT shorted to IN			3		IIIA	
Temperature Hysteresis (Note 4)	ΔV _{OUT} / cycle				120		ppm	
Long-Term Stability	ΔV _{OUT} / time	1000 hours at T _A = +25°C			50		ppm	
DYNAMIC				•			•	
Naise Valtage		f = 0.1Hz to 10Hz			18		μV _{P-P}	
Noise Voltage	eout	f = 10Hz to 1kHz			29		μV _{RMS}	
Turn-On Settling Time	t _R	To Vout = 0.1% of fina	l value, Cout = 50pF		400		μs	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by line regulation test		12.0		40.0	V	
Quiescent Supply Current	los	No load	$T_A = +25^{\circ}C$		340	550		
Quiescent Supply Current	IIN	TA = -40° C to $+125^{\circ}$ C				700	μΑ	
TEMP OUTPUT								
TEMP Output Voltage	VTEMP				630		mV	
TEMP Temperature Coefficient	ТСтемР				2.1		mV/°C	

Note 1: All devices are 100% production tested at $T_A = +25$ °C and guaranteed by design over $T_A = T_{MIN}$ to T_{MAX} , as specified.

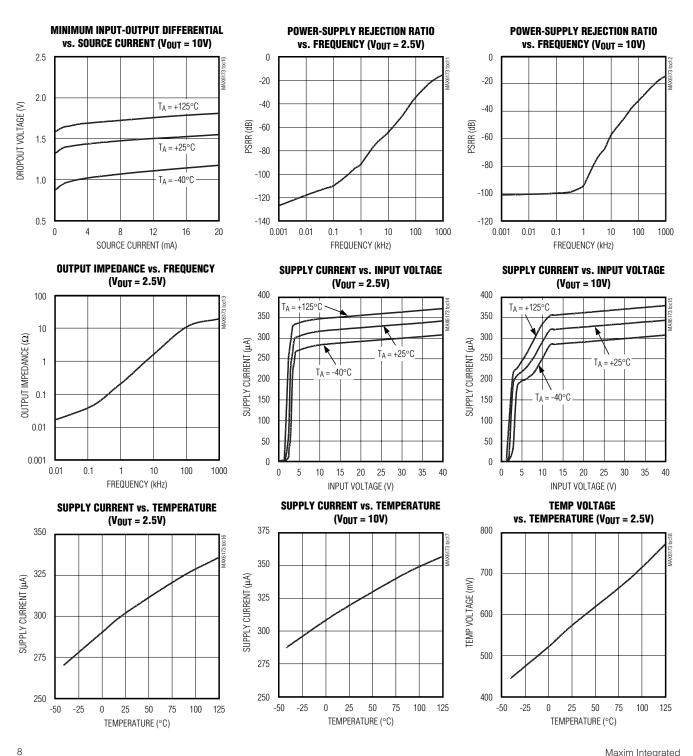
Note 2: Temperature coefficient is defined as ΔV_{OUT} divided by the temperature range.


Note 3: Line and load regulation specifications do not include the effects of self-heating.

Note 4: Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MAX} to T_{MIN}.

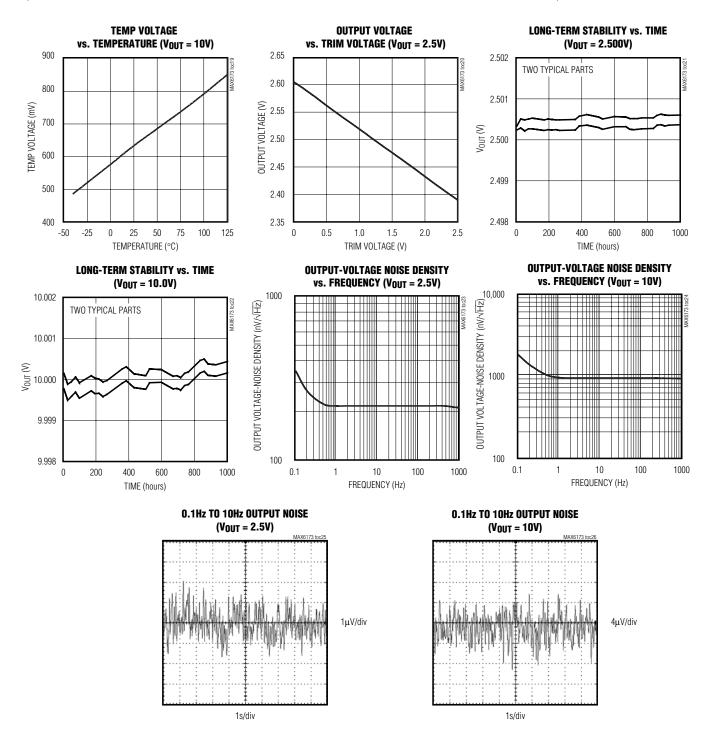
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics


 $(V_{IN} = +5V \text{ for } V_{OUT} = +2.5V, V_{IN} = +15V \text{ for } V_{OUT} = +10V, I_{OUT} = 0, T_A = +25^{\circ}C, unless \text{ otherwise noted.})$

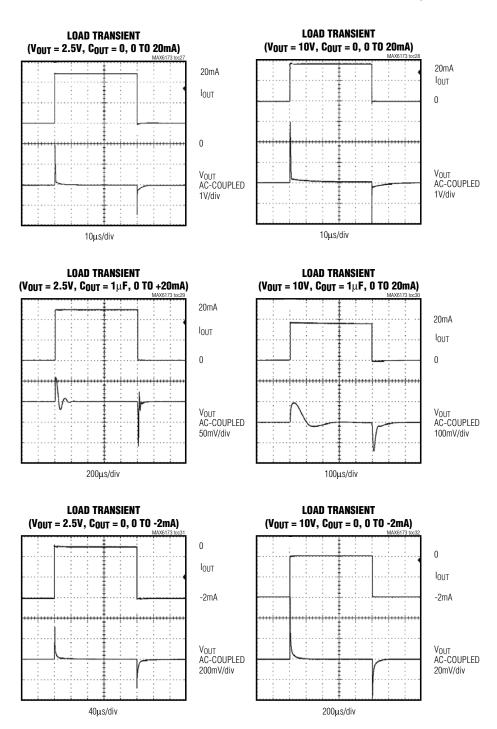
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)


(VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.)

High-Precision Voltage References with Temperature Sensor

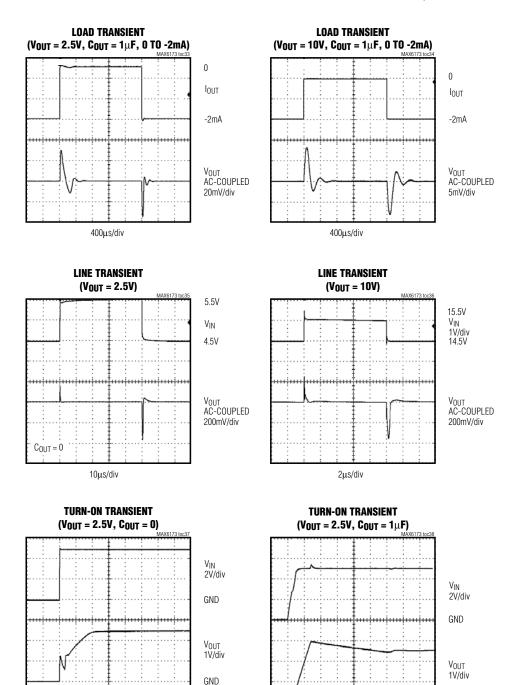
Typical Operating Characteristics (continued)


(VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.)

High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)

(VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.)


GND

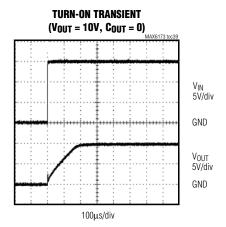
40µs/div

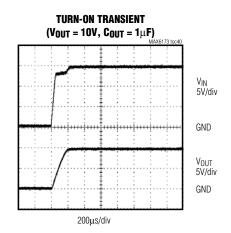
High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)

 $(V_{IN} = +5V \text{ for } V_{OUT} = +2.5V, V_{IN} = +15V \text{ for } V_{OUT} = +10V, I_{OUT} = 0, T_{A} = +25^{\circ}C, unless \text{ otherwise noted.})$

Maxim Integrated 11


 $C_{OUT} = 0$


10µs/div

High-Precision Voltage References with Temperature Sensor

Typical Operating Characteristics (continued)

(VIN = +5V for VOUT = +2.5V, VIN = +15V for VOUT = +10V, IOUT = 0, TA = +25°C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1, 8	I.C.	Internally Connected. Do not connect externally.
2	IN	Positive Power-Supply Input
3	TEMP	Temperature Proportional Output Voltage. TEMP generates an output voltage proportional to the die temperature.
4	GND	Ground
5	TRIM	Output Voltage Trim. Connect TRIM to the center of a voltage-divider between OUT and GND for trimming. Leave unconnected to use the preset output voltage.
6	OUT	Output Voltage
7	N.C.	No Connection. Not internally connected.

Detailed Description

The MAX6173–MAX6177 precision voltage references provide accurate preset +2.5V, +3.3V, +4.096V, +5.0V, and +10V reference voltages from up to +40V input voltages. These devices feature a proprietary temperature-coefficient curvature-correction circuit and laser-trimmed thin-film resistors that result in a very low 3ppm/°C temperature coefficient and excellent 0.05% initial accuracy. The MAX6173–MAX6177 draw 340µA of supply current and source 30mA or sink 2mA of load current.

Trimming the Output Voltage

Trim the factory-preset output voltage on the MAX6173-MAX6177 by placing a resistive divider network between OUT, TRIM, and GND.

Use the following formula to calculate the change in output voltage from its preset value:

 $\Delta VOUT = 2 \times (VTRIM - VTRIM (open)) \times k$

where:

V_{TRIM} = 0V to V_{OUT}

VTRIM (open) = VOUT (nominal) / 2 (typ)

 $k = \pm 6\%$ (typ)

For example, use a 50k Ω potentiometer (such as the MAX5436) between OUT, TRIM, and GND with the potentiometer wiper connected to TRIM (see Figure 2). As the TRIM voltage changes from V_{OUT} to GND, the output voltage changes accordingly. Set R2 to 1M Ω or less. Currents through resistors R1 and R2 add to the quiescent supply current.

High-Precision Voltage References with Temperature Sensor

Temp Output

The MAX6173–MAX6177 provide a temperature output proportional to die temperature. TEMP can be calculated from the following formula:

TEMP (V) =
$$T_{JJ}$$
 (°K) x n

where T_J = the die temperature,

n = the temperature multiplier,

$$n = \frac{V_{TEMP}(at T_J = T_0)}{T_0} \approx 1.9 \text{mV/}^{\circ} \text{K}$$

 T_A = the ambient temperature.

Self-heating affects the die temperature and conversely, the TEMP output. The TEMP equation assumes the output is not loaded. If device power dissipation is negligible, then $T_J \approx T_A$.

Applications Information Bypassing/Output Capacitance

For the best line-transient performance, decouple the input with a $0.1\mu F$ ceramic capacitor as shown in the *Typical Operating Circuit*. Place the capacitor as close to IN as possible. When transient performance is less important, no capacitor is necessary.

The MAX6173-MAX6177 do not require an output capacitor for stability and are stable with capacitive loads up to 100µF. In applications where the load or the

supply can experience step changes, a larger output capacitor reduces the amount of overshoot (undershoot) and improves the circuit's transient response. Place output capacitors as close to the devices as possible for best performance.

Supply Current

The MAX6173-MAX6177 consume $320\mu A$ (typ) of quiescent supply current. This improved efficiency reduces power dissipation and extends battery life.

Thermal Hysteresis

Thermal hysteresis is the change in the output voltage at $T_A = +25$ °C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical thermal hysteresis value is 120ppm.

Turn-On Time

The MAX6173–MAX6177 typically turn on and settle to within 0.1% of the preset output voltage in 150 μ s (2.5V output). The turn-on time can increase up to 150 μ s with the device operating with a 1 μ F load.

Short-Circuited Outputs

The MAX6173–MAX6177 feature a short-circuit-protected output. Internal circuitry limits the output current to 60mA when short circuiting the output to ground. The output current is limited to 3mA when short circuiting the output to the input.

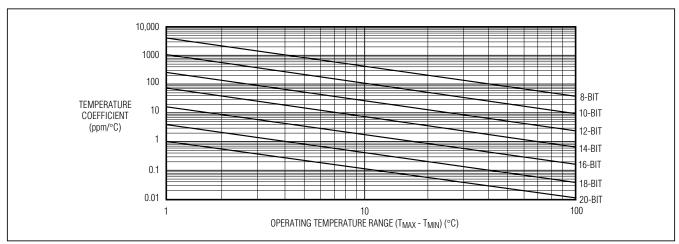


Figure 1. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

High-Precision Voltage References with Temperature Sensor

Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 1 shows the maximum allowable reference-voltage temperature coefficient to keep the conversion error to less than 1 LSB, as a function of the operating temperature range ($T_{\rm MAX}$ - $T_{\rm MIN}$) with the converter resolution as a parameter. The graph assumes the reference-voltage temperature coefficient as the only parameter affecting accuracy.

In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage-reference changes.

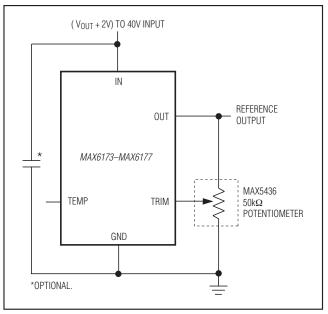
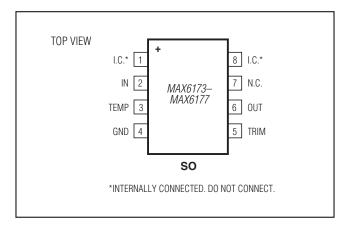



Figure 2. Applications Circuit Using the MAX5436 Potentiometer

Pin Configuration

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/package. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
8 SO	S8+4	21-0041	90-0096

High-Precision Voltage References with Temperature Sensor

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/04	Initial release	_
1	2/11	Added automotive grade part, lead-free information, and soldering temperature	1, 2
2	3/14	Update package code in Package Information	14

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.