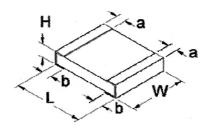
CSRF Series

Foil on Ceramic Current Sensing Chip Resistor

Stackpole Electronics, Inc.

Resistive Product Solution

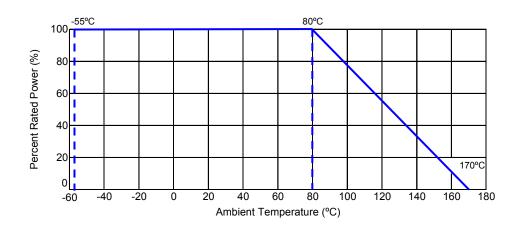
Features:


- High power rating up to 2W
- Low inductance typically less than 0.2nH
- Wide resistance range $(0.003\Omega 0.100\Omega)$
- Current handling up to 40 amps
- TCR down to ±50 ppm/°C
- Non-standard resistance values available
- RoHS compliant / lead-free

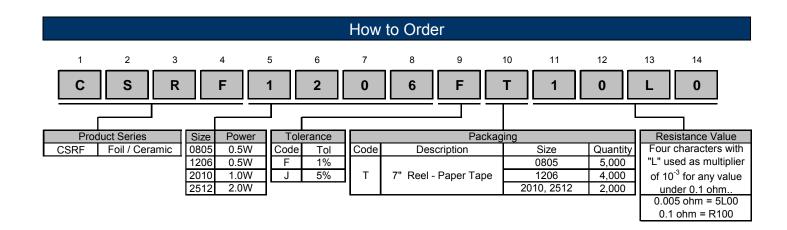
Electrical Specifications								
Type / Code	Old Package Code	Power Rating (Watts) @ 70°C	Resistance Temperature Coefficient(1)	Ohmic Range (0	e) and Tolerance 5%			
CSRF0805	NA	0.5W	±50 ppm/°C	0.010 - 0.100	0.010 - 0.100			
CSRF1206	1/2	0.5W	±100 ppm/°C ±50 ppm/°C	0.005 - 0.010 0.011 - 0.100	0.005 - 0.010 0.011 - 0.100			
CSRF2010	CSRF2010 1 1W		±100 ppm/°C ±50 ppm/°C	0.003 - 0.010 0.011 - 0.100	0.003 - 0.010 0.011 - 0.100			
CSRF2512	CSRF2512 2 2W		±100 ppm/°C ±50 ppm/°C	0.003 - 0.010 0.011 - 0.100	0.003 - 0.010 0.011 - 0.100			

⁽¹⁾ Contact factory for TCR parameter for values below 0.01Ω

Please refer to the High Power Resistor Application Note (page 4) for more information on designing and implementing high power resistor types.



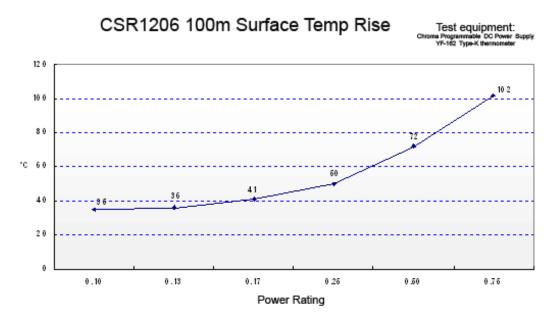
Mechanical Specifications							
Type / Code	L Body Length	W Body Width	H Body Height	a Top Termination	b Bottom Termination	Unit	
CSRF0805	0.079 ± 0.008	0.049 ± 0.006	0.024 ± 0.008	0.016 ± 0.010	0.020 ± 0.014	inches	
	2.00 ± 0.20	1.25 ± 0.15	0.60 ± 0.20	0.40 ± 0.25	0.50 ± 0.35	mm	
CSRF1206	0.126 ± 0.008	0.063 ± 0.008	0.030 ± 0.010	0.020 ± 0.008	0.022 ± 0.010	inches	
	3.20 ± 0.20	1.60 ± 0.20	0.75 ± 0.25	0.50 ± 0.20	0.55 ± 0.25	mm	
CSRF2010	0.197 ± 0.010	0.098 ± 0.008	0.039 ± 0.006	0.037 ± 0.006	0.037 ± 0.006	inches	
(3mΩ - 5mΩ)	5.00 ± 0.25	2.50 ± 0.20	1.00 ± 0.15	0.95 ± 0.15	0.95 ± 0.15	mm	
CSRF2010	0.197 ± 0.010	0.098 ± 0.008	0.039 ± 0.006	0.031 ± 0.006	0.031 ± 0.006	inches	
(≥5mΩ)	5.00 ± 0.25	2.50 ± 0.20	1.00 ± 0.15	0.80 ± 0.15	0.80 ± 0.15	mm	
CSRF2512	0.250 ± 0.010	0.126 ± 0.008	0.035 ± 0.012	0.039 ± 0.006	0.039 ± 0.006	inches	
(3mΩ - 5mΩ)	6.35 ± 0.25	3.20 ± 0.20	0.90 ± 0.30	1.00 ± 0.15	1.00 ± 0.15	mm	
CSRF2512	0.252 ± 0.008	0.126 ± 0.008	0.031 ± 0.006	0.037 ± 0.010	0.039 ± 0.012	inches	
(≥6mΩ)	6.40 ± 0.20	3.20 ± 0.20	0.80 ± 0.15	0.95 ± 0.25	1.00 ± 0.30	mm	


Performance Characteristics							
Test	Test Method	Test Specification	Typical				
Load Life	MIL-STD-202F-Method 108A RCWV at 70°C; 1.5hrs ON; 0.5hrs OFF Total 1024 ± 24hrs	± 1%	≤ 0.5%				
Resistance to Soldering Heat	MIL-STD-202F-Method 210E 260 ± 5°C for 10 ± 1sec	± 1%	≤ 0.3%				
Solderability	MIL-STD-202F-Method 208H 245 ± 5°C for 2 ± 0.5sec	minimum 95% coverage	> 95%				
Thermal Shock	MIL-STD-202F-Method 107G -55°C to 150°C, 100 cycles	± 1%	≤ 0.3%				
Short Time Overload	JIS-C-5202-5.5 5x rated power for 5 sec	± 1%	≤ 0.3%				
High Temperature Exposure	125°C: 1000 hous	± 1%	≤ 0.2%				
Moisture Resistance	MIL- STD-202F-Method 106G	± 1%	≤ 0.5%				
Insulation Resistance	MIL-STD-202F-Method 302 Apply 100Vdc for 1 minute	1MΩ minimum	≥ 1MΩ				

Operating Temperature Range: -55°C to +170°C

Power Derating Curve:

Resistive Product Solutions


Legacy Part Number (before January 3, 2011):

SEI Type			Code		Nominal Resistance	Tolerance		Pac	kaging	
	CSRF		1/2		0.01	1%	R			
Type	Description	Code	Wattage	Size	•	Tolerance	SEI Types	Pkg Qty	Description	Code
CSRF	Foil / Ceramic	1/2	0.5W	1206	•	1%	1/2	4,000	7" rool nanor tana	R
		1	1.0W	2010		5%	1, 2	2,000	7" reel - paper tape	
		2	2 0W	2512						

High Power Chip Resistors and Thermal Management

Stackpole has developed several surface mount resistor series in addition to our current sense resistors, which have had higher power ratings than standard resistor chips. This has caused some uncertainty and even confusion by users as to how to reliably use these resistors at the higher power ratings in their designs.

The data sheets for the RHC, RMCP, RNCP, CSR, CSRN, CSRF, CSS, and CSSH state that the rated power assumes an ambient temperature of no more than 100 degrees C for the CSS / CSSH series and 70 degrees C for all other high power resistor series. In addition, IPC and UL best practices dictate that the combined temperature on any resistor due to power dissipated and ambient air shall be no more than 105C. At first glance this wouldn't seem too difficult, however the graph below shows typical heat rise for the CSR ½ 100 milliohm at full rated power. The heat rise for the RMCP and RNCP would be similar. The RHC with its unique materials, design, and processes would have less heat rise and therefore would be easier to implement for any given customer.

The 102 degrees C heat rise shown here would indicate there will be additional thermal reduction techniques needed to keep this part under 105C total hot spot temperature if this part is to be used at 0.75 watts of power. However, this same part at the usual power rating for this size would have a heat rise of around 72 degrees C. This additional heat rise may be dealt with using wider conductor traces, larger solder pads and land patterns under the solder mask, heavier copper in the conductors, vias through PCB, air movement, and heat sinks, among many other techniques. Because of the variety of methods customers can use to lower the effective heat rise of the circuit, resistor manufacturers simply specify power ratings with the limitations on ambient air temperature and total hot spot temperatures and leave the details of how to best accomplish this to the design engineers. Design guidelines for products in various market segments can vary widely so it would be unnecessarily constraining for a resistor manufacturer to recommend the use of any of these methods over another.

Note: The final resistance value can be affected by the board layout and assembly process, especially the size of the mounting pads and the amount of solder used. This is especially notable for resistance values ≤ 50 m Ω . This should be taken into account when designing.

4